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Summary 

Objectives. Analyze anatomical connectivity 

and integrity of three white matter tracts 

involve in face recognition system in three 

age samples: children, young adults and 

elderly adults. Background. The neural circuit 

of face recognition has been well 

characterized in a wide age spectrum. 

However, anatomical connectivity changes 

across aging are still unclear. Methods. The 

variations in the connectivity of this circuit in 

three age samples (32 individuals, 8 to 78 

years) are examined here, by focusing in 

three major association tracts: inferior 

frontal-occipital (IFOF), inferior longitudinal 

(ILF) and superior longitudinal fasciculi 

(SLF). These seem to be connectors 

between nodes of the face recognition 

system (occipital face area (OFA), face 

fusiform area (FFA) and superior temporal 

sulcus (STS), although little is known about 

SLF. Fiber tracking computations were 

performed using a deterministic method. 

Results. Fractional anisotropy (FA) and 

number of streamlines of the IFOF, ILF and 

SLF were estimated. Resulting FA values 

are similar across groups in ILF and SLF. 

However, the IFOF shows a decrease FA in 

elderly adults. In addition, children exhibit 

lower number of streamlines than young 

adults in all tracts, while elderly exhibit a 

selective decrease in the bilateral IFOF and 

a selective increase in SLF. Conclusions. Our 

study shows that the anatomical 

connectivity of the face recognition circuit 

remains similar. Aging produces a selective 

decrease in the occipito-frontal connectivity, 

preserving the connectivity with the 

temporal lobe. 

Keywords: Aging, tractography, inferior fronto-

occipital fasciculus, inferior longitudinal 

fasciculus, superior longitudinal fasciculus. 
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Cambios Relacionados a la Edad en los 

Tractos de la Sustancia Blanca 

Asociados al Sistema de 

Reconocimiento Facial 

Resumen 

Objetivo. Analizar la conectividad e integridad 

de tres tractos involucrados en el sistema 

de reconocimiento de caras en tres grupos 

de edad: niños, adultos jóvenes y adultos 

viejos. Antecedente. La actividad neural que 

subyace al reconocimiento de caras ha sido 

bien caracterizada en un amplio espectro 

de edades. Sin embargo, los cambios en la 

conectividad anatómica a través de las 

edades, aún no es claro. Método. Se 

examinaron las variaciones en la 

conectividad de este circuito en tres grupos 

con diferentes edades (32 participantes, 

entre los 8 y lo 78 años), enfocándose en 

tres fascículos de asociación: fascículo 

inferior frontal-occipital (IFOF), fascículo 

inferior longitudinal (ILF) y fascículo 

superior longitudinal (SLF). Estos parecen 

ser conectores entre nodos implicados en el 

reconocimiento de caras (área facial 

occipital (OFA) y circunvolución temporal 

superior (STS) aunque se sabe poco de la 

DLF. Utilizando un método determinístico 

se realizaron computaciones para el 

seguimiento de las fibras. Resultados: Se 

estimaron la anisotropía fraccional (FA) y el 

número de corrientes de IFOF, ILF y SLF. 

Los valores hallados FA son similares a 

través de los grupos en ILF y SLF. Sin 

embargo, la IFOF muestra un decremento 

en los adultos viejos. Además, los niños 

muestran un número menor de corrientes 

que los adultos en todos los tractos, en 

tanto que los adultos viejos muestran un 

decremento selectivo en OFOF bilateral y 

un incremento selectivo en SLF. Conclusiones: 

Nuestro estudio muestra que la 

conectividad anatómica en los circuitos que 

participan en el reconcomiendo de caras 

permanecen similares.  En envejecimiento 

produce un decremento selectivo en la 

conectividad occipito-frontal, preservándose 

la conectividad con el lóbulo temporal 

Palabras clave: Envejecimiento, fascículo 

fronto-occipital, fascículo longitudinal 

inferior, fascículo longitudinal superior. 

 

 

 

 

Introduction 

Occipito-temporal cortex in humans 

includes functionally defined regions that 

preferentially respond to faces. These 

regions have been reliably identified using 

functional magnetic resonance imaging 

(fMRI), revealing the “core” of face 

processing (Friston, Harrison, & Penny, 

2003; Haxby, Hoffman, & Gobbini, 2002; 

Mountcastle, 1998). These “core” regions 

are the fusiform face area (FFA), located at 

fusiform gyrus, the occipital face area (OFA) 

and superior temporal sulcus (STS) and all 

they are involved in structural  face 

perception, responding more to faces than 

to objects or scenes (especially in the right 

hemisphere) (Kanwisher, McDermott, & 

Chun, 1997; Li, Xue, Cui, & Wong, 2011). 

The extended system includes regions not 

exclusively devoted to face processing, that 

are optionally recruited according to task, 

such as posterior cingulate and orbitofrontal 

areas (Valdés-Sosa et al., 2011). The 

activation of these brain regions by faces 

has been replicated in many studies using 

various tasks (Friston et al., 2003). 

Several studies have focused on different 

developmental trajectories of face 

processing area, revealing critical age-

related differences in visual cortex function 

(Aylward, 2005; Golarai et al., 2007; Scherf, 
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Behrmann, Humphreys, & Luna, 2007). 

However, ascertaining the change of neural 

circuitry underlying a cognitive process 

requires not only identifying the critical 

cortical nodes but also establishing their 

anatomical and functional links. Aging is 

associated with a reduction in white matter 

volume (Good et al., 2002; Young, 1993) 

that seems to be more pervasive at times 

than even the gray matter decline (Resnick, 

Pham, Kraut, Zonderman, & Davatzikos, 

2003), and generally involve a reduction in 

the integrity of white matter tracts (Madden 

et al., 2009; Sullivan & Pfefferbaum, 2006). 

This decline of white matter tracts integrity, 

involved in connecting the critical cortical 

nodes, can be examined with Diffusion 

Tensor Imaging (DTI). Recent studies of this 

technique have started to uncover age-

related microstructural changes in white 

matter (Jones et al., 2006; Pfefferbaum & 

Sullivan, 2003; Sullivan & Pfefferbaum, 

2006). Several reports evince a global white 

matter volume increase from childhood to 

adultness (Courchesne et al., 2000; Lebel & 

Beaulieu, 2011), and a further declination 

after maturation (Ge et al., 2002). 

It has been postulated the importance of 

two major association tracks in face 

processing circuitry connectivity: inferior 

longitudinal (ILF) and inferior fronto-occipital 

fascicule (IFOF). The IFOF connects 

inferior-lateral and dorso-lateral frontal 

cortex with posterior temporal cortex 

(Crosby, 1962; Gloor, 1997) and continues 

posteriorly before radiating to the occipital 

lobe (Catani, Howard, Pajevic, & Jones, 

2002). The ILF passes along the lateral wall 

of the occipital and temporal horns of the 

lateral ventricle (Catani et al., 2002) and 

fibers project in the superior, middle, and 

inferior temporal and fusiform gyri and 

project to the lingula, cuneus, lateral surface 

of the occipital lobe and occipital pole 

(Crosby, 1962; Dejerine, 1895) These tracts 

are the most important connectors between 

occipito-temporal nodes (FFA and OFA) 

and the frontal lobe (Mori, Wakana, Van Zijl, 

& Nagae-Poetscher, 2005). Some studies 

have focused in these tracts, linking brain 

connectivity changes with face processing 

variables (Tavor et al., 2014; Thomas et al., 

2008); and also a few studies have 

described changes in white matter 

connectivity cross life in children and 

(Scherf, Thomas, Doyle, & Behrmann, 

2014; Thomas et al., 2008), in ILF and 

IFOF.  

However, there is another major tract, the 

superior longitudinal fascicule (SLF) that 

could be associated with the face 

processing circuit. SLF stems from the 

caudal part of the superior temporal gyrus 

reaching the occipital and parietal lobes 

(Mori et al., 2008) and arches around the 

caudal end of the Sylvian fissure and 

extends to the lateral prefrontal cortex 

(Makris et al., 2005), thus it could be 

involved in connecting STS with frontal 

(Philippi, Mehta, Grabowski, Adolphs, & 

Rudrauf, 2009). Philippi et al. suggested the 

implication of SLF in other kinds of 

information conveyed by faces, such as the 

processing of emotional expression, lip 

speech, due to the relationship of this tract 

with STS (Philippi et al., 2009). 

Recently Ethofer et al. (2013) in a study of 

functional responses and structural 

connections of cortical areas for processing 

faces and voices in STS have demonstrated 

that stronger connections in audiovisual 

integration areas running through the dorsal 

part of the SLF do exist. Thus, given the 

close relationship of this track with visual 

processing and its trajectory, reaching the 

superior temporal gyrus next to the STS, it 

would probably be involved in face 
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processing. However, the studies that have 

explored connectivity changes relating age 

and face processing system have not 

considered the SLF. 

Here, we search for specific age-related 

differences in fiber tracts connecting the 

nodes of face processing system across 

three age groups, children, young adults 

and elderly adults. We included not only the 

IFOF and the ILF previously studied, but 

also included the previously neglected SLF. 

By Using DTI and by applying deterministic 

method of Fiber Assignment by Continuous 

Tracking and regions of interest (ROIs) we 

were able to reconstruct the inferior fronto-

occipital, inferior longitudinal and superior 

longitudinal fasciculi, the three major white 

matter tracts involved in the processing of 

visual stimuli in addition to faces (Tavor et 

al., 2014; Thomas et al., 2008). In order to 

characterize the age-dependent variation in 

brain connectivity, were analyzed in these 

tracts the fractional anisotropy and number 

of streamlines. 

 

 

Methods 

Participants 

A sample of 32 subjects, aged between 8 

and 78 years, with no neurological or 

psychiatric history, was recruited for this 

study voluntarily specifically for the 

purposes of this study. The sample was 

divided into three age groups: children 

(n=11, Mean=9.8 years, SD=1.18), young 

adults (n=12, Mean=28.5 years, SD=3.44) 

and elderly adults (n=9, Mean=70.2 years, 

SD=3.92). All participants were native 

Spanish speakers (30 right handed, 

ascertained by self-report). All subjects 

gave written informed consent. The 

experimental procedures had previously 

received approval by the ethics committee 

of the Cuban Center for Neuroscience. The 

study was carried out in accordance with 

the principles stated in the declaration of 

Helsinki (Dale, & Salo, 1996). 

Magnetic Resonance Imaging Acquisition Protocol 

A Siemens 1.5T Magnetom Symphony 

system with a standard birdcage head coil 

for signal transmission/reception (Siemens, 

Erlangen, Germany) was used to acquire 

images for all subjects. The scanning 

protocol included, for each subject, a high 

resolution T1-weighted anatomical image 

and a standard diffusion sequence. The T1-

weighted structural image (1 x 1 x 1 mm 

resolution) was acquired for further 

coregistration with the following parameters: 

echo time (TE) = 3.93 ms, repetition time 

(TR) = 3000 ms, flip angle = 8°, and field of 

view (FOV) = 256x256x176 mm. This 

yielded 176 contiguous 1 mm thick slices in 

a sagittal orientation. Axial diffusion 

weighted images (DWI) was acquired along 

twelve independent directions, in 52 slices 

of 2.5 mm, spaced at 2.5 mm, with 2 mm x 

2 mm in plane resolution, and a diffusion 

weighting b value of 1200s/ mm2. The 

following parameters were used: acquisition 

matrix size = 128 x 128, TE=102 ms, 

TR=9000 ms, flip angle=90°. A reference 

image (b0 image) with no diffusion 

weighting was also obtained (b = 0 s/mm2). 

In order to correct the distortions caused by 

magnetic field inhomogeneities, in the 

series of DWI detailed phase and 

magnitude maps were obtained. The 

parameters used were: acquisition matrix 

size = 64 x 64, 52 slices of 3 mm, spaced at 

3 mm, with 4 mm x 4 mm in plane 

resolution, TE (phase image) = 10.87 ms, 

TE (magnitude image) = 6.11, TR = 525 ms, 

flip angle = 60°. After correction for image 

distortions due to the diffusion gradients, the 

diffusion tensor and the fractional anisotropy 
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(FA) were determined in each voxel 

(Pierpaoli & Basser, 1996). 

» Correction of magnetic field inhomogeneities 

The DTI images were movement-, eddy-

current, and distortion-corrected. Using the 

magnitude and phase images and the 

package of Unwarping (Anderson, 2001), 

the effects of the principal inhomogeneities 

of magnetic fields were corrected. 

» Fiber Tracking Computation 

Computation of the diffusion tensor and 

fiber tracking was performed using DTI and 

Fiber Tools v.3.0 (www.uniklinik-

reiburg.de/mr/live/arbeitsgruppen/diffusion_

en.html) (Kreher, Hennig, & Il’yasov, 2006), 

implemented in Matlab v.7.7 (Mathworks). 

According to the formulation of Basser, 

Mattiello and LeBihan, (1994), and by 

diagonalizing the diffusion tensor for each 

voxel, the toolbox generates as output six 

components of a diffusion tensor (Dxx, Dyy, 

Dzz, Dxy, Dxz, and Dyz) and three 

eigenvectors that characterize the direction 

of diffusion and three eigenvalues that 

characterize the magnitude of the diffusion 

in the corresponding eigenvector calculated 

(Basser et al., 1994). A tensor-smoothing 

algorithm (Westin et al., 2002) was 

employed before fiber tracking as this is 

known to reduce residual errors and 

increase group differences (Jones et al., 

2006). 

Three-dimensional reconstruction of the 

tracts was performed using the deterministic 

tractography method Fiber Assignment by 

Continuous Tracking algorithm and a brute-

force reconstruction approach (Mori, Crain, 

Chacko, & Van Zijl, 1999). Fiber tracking 

was initiated by specifying six parameters: 

the minimum FA threshold for starting 

tracking, the minimum FA for stopping 

tracking, the maximum trace (Tr) for starting 

tracking, the maximum trace for stopping 

tracking and the critical angle threshold for 

stopping tracking in case the algorithm 

encounters a sharp turn in the fiber direction 

and a minimum fiber length. The start 

criteria used in the reconstruction of the 

tracts were FA = 0.1, Tr = 0.0016, and a 

stop criteria FA = 0.15, Tr = 0.002. A turning 

angle threshold of 53.1° and minimum fiber 

length of five voxels were used. DTI and 

Fiber Tools v.3.0 used these parameters to 

generate the coordinates of all fibers in the 

brain from which the tract trajectory are 

reconstructed after drawing a ROI in a user-

defined region of the brain. This software 

allows quantifying the number of 

streamlines and the fractional anisotropy in 

each tract, the former one as a FA mean of 

voxels that integrate the tracts.  

» Definition of ROIs  

A multiple ROIs approach was used for the 

reconstruction of the tracts of interest 

because it has been tested that the two-ROI 

and brute-force approach could effectively 

reduce the sensitivity to the noise and ROI 

placement (Huang, Zhang, van Zijl, & Mori, 

2004). The fiber tracking was performed on 

all voxels of the brain, and fibers that 

penetrated the previously defined ROIs 

were assigned to the specific tracts 

associated to each pair of ROIs.  

ROIs defined in previous publications 

(Valdés-Sosa et al., 2011) were used for 

defining the following tracts: ILF, IFOF and 

SLF (Mori et al., 2002). The ROIs were 

drawn using the program MRIcroN 

(http://www.mricron.com) in an anatomical 

reference image, in the Montreal 

Neurological Institute (MNI) stereotactic 

space (Evans et al., 1993). They were then 

transformed back to the native brain space 

of each individual automatically, using 

custom-made Matlab 7.7. These routines 

perform rigid registration (Ashburner & 

http://www.uniklinik-reiburg.de/mr/live/arbeitsgruppen/diffusion_en.html
http://www.uniklinik-reiburg.de/mr/live/arbeitsgruppen/diffusion_en.html
http://www.uniklinik-reiburg.de/mr/live/arbeitsgruppen/diffusion_en.html
http://www.mricron.com/
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Friston, 1999) of T1-structural images to 

MNI stereotactic space and to 

correspondent b0 image (mutual 

information) (Studholme, Hawkes, & Hill, 

1998). This was done via inverse 

transformations of the mappings used for: 1) 

Realignment of a high-resolution anatomical 

T1 image, initially coregistered to DTI (b0 

image), to the standard position on the AC-

PC plane; 2) Normalization (jointly with 

segmentation) of the T1 image to MNI 

space using the procedure from SPM5.  

› Inferior fronto-occipito fasciculus (IFOF) 

The IFOF was defined as those fibers in 

contact with an occipital ROI, with the 

sagittal stratum, and with a frontal ROI, 

while not in contact with central grey nuclei, 

nor the cerebral midline, nor the temporal 

ROI used to define ILF. The occipital ROI 

was traced on the coronal slices -64 < y < -

58, from the transverse parieto-occipital 

sulcus to the ventral border of the occipital 

lobe. The homonymous region from a white 

matter parcellation map in MNI space (Mori 

et al., 2008) was used to create the sagittal 

stratum ROI, which was then dilated at the 

surface by 3 voxels. The frontal ROI was 

traced at the anterior border of the insula 

and included all the frontal lobe, on the 

coronal slices -20 < y < 25. 

› Inferior longitudinal fasciculus (ILF) 

The ILF were defined as those fibers in 

contact with the same occipital ROI as 

IFOF, with the sagittal stratum, and with a 

temporal ROI, while not in contact with the 

frontal ROI used to define IFOF (see 

above), nor the central grey nuclei, nor the 

cerebral midline. The temporal ROI included 

the inferior and middle temporal gyri (and 

underlying white matter) in coronal slices -3 

<y< 3 mm. 

› Superior longitudinal fasciculus (SLF) 

The SLF was defined as those fibers in 

contact with an occipital ROI and a temporal 

ROI. Occipital ROI was drowned on coronal 

slice 53 < y < 55, when in sagittal view the 

fornix can be identified as a unique 

structure. Then in sagittal view is selected a 

coronal plane in the middle of the splenium 

of corpus callosum, and a temporal ROI 

was drowned on coronal slice 9 < y < 11. 

Statistical Analysis 

Streamline count and FA measures for each 

tract were submitted to a repeated measure 

analysis of variance (rmANOVA) using 

Group as categorical factor and Tracts and 

Hemisphere as within effects. A 

Greenhouse and Geisser correction was 

applied (Greenhouse & Geisser, 1959) 

Then planned comparison between these 

groups were implemented for each tract. 

 

 

Results 

The reconstruction of the tracts of interest 

IFOF, ILF and SLF was successfully 

performed (seeFigure 1). 

FA values are shown on Graph 1 ILF and 

SLF showed a similar FA values for the 

three age groups. However, the IFOF 

evince a FA decrease in elderly adults. The 

rmANOVA for FA revealed a main effect for 

group (F = 2.76, d.f = 2, p = 0.08), and a 

significant main effect for tracts (F = 4.77, 

d.f. = 2, p = 0.012) and hemisphere (F = 

15.18, d.f. = 1, p = 0.001). The most 

important results, however, were a highly 

significant interactions for Tract x Group x 

Hemisphere (=0.893815; p<0.05) and 

Tract x Group (=0.868127; p<0.01). 

Planned comparison tests revealed 

differences in FA measures between some 

of the three groups in all tracts. Elderly 

adults showed a decrease in the FA related 

to children (Left: F (1,29) = 21.43, p < 0.01; 
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Right: F (1,29) =22.32, p<0.01) and young 

adults (Left: F (1,29) = 14.19, p < 0.01; 

Right: F (1,29) = 11.28, p < 0.01) for 

bilateral IFOF. 

 

 
 

Figure 1. Reconstruction of left inferior fronto-occipital fasciculus (IFOF) in red, left dorsal inferior 
longitudinal fasciculus (ILF) in blue and left superior longitudinal fasciculus (SLF) in green, in children (A), 
young adults (B) and elderly adults (C) projected on the individual brain of one subject from each group. 

 

 

 

Graph 1. Fractional anisotropy of IFOF, ILF and SLF in both hemispheres for the three study groups 
(children, young adults and elderly adults). Whiskers represent standard errors.  

 



Góngora et al. 

 

42                                   Revista Neuropsicología, Neuropsiquiatría y Neurociencias                                    

Streamlines count analysis is showed in 

Graph 2. Young adults showed significantly 

higher number of streamlines compared to 

children and elderly adults. The difference 

between young adults and children was the 

biggest, and this difference was of similar 

magnitude for all the tracts analyzed in both 

hemispheres. However, elderly adults 

showed an intermediate pattern between 

children and young adults, with a more 

pronounced difference for the IFOF, in 

which their number of streamlines reached 

lower values than the other two groups. SLF 

show greater number of streamlines in 

elderly adults than in children and young 

adults (Graph 2).  

The rmANOVA for number of streamlines 

revealed a significant main effect for group 

(F = 9.62, d.f = 2, p = 0.001) and tracts (F = 

42.51, d.f. = 2, p = 0.000) and no significant 

effects for hemisphere (F = 0.72, d.f. = 1, p 

= 0.402). The most important results were 

that there is no significant Tract x Group x 

Hemisphere interaction (F (4,58) = 0.21, p < 

0.93), but there is a Tract x Group 

interaction (F (4,58) = 6.35, p<0.0026,  = 

0.953277, p < 0.01). Planned comparisons 

tests revealed significant differences in the 

number of streamlines between some of the 

three groups in all tracts. Young adults 

showed an increase in the number of 

streamlines related to children for all tracts 

of interest bilaterally, including IFOF (F 

(1,29) = 8.79, p<0.01), ILF (F (1,29) = 6.50, 

p < 0.02) and SLF (F (1,29) = 4.50, p < 

0.04). Elderly adults exhibited a decrease in 

the number of streamlines related to young 

adults for IFOF (F (1,29) = 18.94, p < 0.01). 

The only difference detected between 

children and elderly adults was a significant 

increase on number of streamlines in older 

subjects in SLF (F (1,29) = 10.83, p < 0.01). 

In this tract the number of streamlines in 

elderly participants was closer to the values 

of young adults, which was exceeded in 

right hemisphere by elderly group. 

 

 

Graph 2. Number of streamlines of IFOF, ILF and SLF in both hemispheres for the three study groups 
(children, young adults and elderly adults). Whiskers represent standard errors. 

Discussion Tractography is a unique tool to 

characterize white matter architecture three-



Age-Related Changes in Face Recognition 

 

                                   Revista Neuropsicología, Neuropsiquiatría y Neurociencias                                   43 

dimensionally and non-invasively. This 

technique illustrated quantitatively the 

trajectories of IFOF, ILF and SLF, which is 

useful for comparing these tracts between 

age groups. We reconstructed previously 

documented tracts using anatomical 

constraints (multiple ROIs) based on a priori 

knowledge (Mori et al., 2002; Valdés-Sosa 

et al., 2011). The semiautomatic procedure 

of transformation used here minimized the 

error of each ROI by drawing them in the 

individual space of each subject's brain. 

However, it is possible that some parts of 

the trajectory will contain inaccuracies due 

to partial volume effects, noise, and 

crossing fibers. It is also important to 

understand that the visualized pathways do 

not necessarily reflect brain connectivity 

because individual axons could be merging 

and blanching at any point along the bundle 

(Wakana et al., 2007). 

Fractional anisotropy 

Fractional anisotropy is an index that 

reflects the degree to which diffusion of 

water molecules is restricted by 

microstructural elements such as cell 

bodies, axons, myelin, and other 

constituents of cytoskeleton (Beaulieu, 

2002), thus describing the microstructural 

properties of the axons within a voxel 

(Thomas et al., 2008). Thus, using this 

index the characterization of IFOF, ILF and 

SLF can explain the changes in white 

matter integrity that occurs across life spam. 

Previous reports of DTI studies have shown 

an increased FA (Beaulieu, 2002) 

throughout brain white matter during 

childhood, adolescence, and young 

adulthood (Eluvathingal, Hasan, Kramer, 

Fletcher, & Ewing-Cobbs, 2007; Lebel, 

Walker, Leemans, Phillips, & Beaulieu, 

2008; Mukherjee, Nissen, & Topol, 2001; 

Schmithorst, Wilke, Dardzinski, & Holland, 

2002). Our findings confirm these reports 

and support the idea that white matter 

maturation may starts from early childhood 

to adolescence and continues into the 

midlife after a large increase from early 

childhood to adolescence (Ge et al., 2002), 

having the largest relative FA increase of 

58%, observed in a sample from 8 to 30 

years (Tamnes et al., 2010).  

Our results support the theory of Lebel and 

Beaulieu (2011) suggesting that maturation 

continues during the twenties in association 

tracts, especially in IFOF and ILF, and also 

in SLF (Giorgio et al., 2008), with an 

increase of FA. However, Asato et al. 

(2010) found that IFOF and SLF attain 90% 

of their maximum FA value between 13 and 

20 years of age (Asato, Terwilliger, Woo, & 

Luna, 2010; Bashat et al., 2005; Lebel et al., 

2008). On the other hand, Lebel et al. 

(2008) reported nonlinear age-related 

increases in FA of all tracts studied in the 

age span 5-29 years, including the tracts 

analyzed in this work. 

In adultness there is a progressive reduction 

in FA, consistent with white matter damage 

due to axonal loss, causing age-related 

cognitive decline (Charlton et al., 2006; 

Salat et al., 2005; Stadlbauer et al., 2008; 

Thomas et al., 2008). It has been reported 

that there is a 10% decrease in myelinated 

fibers length per decade (Marner, 

Nyengaard, Tang, & Pakkenberg, 2003). 

Stadlbauer et al. (2008) suggested that this 

decrease was related to the significant 

increase in the perpendicular component of 

diffusion λ2 and it may have been due to 

increased extracellular space (Meier‐Ruge, 

Ulrich, Brühlmann, & Meier, 1992; 

Nusbaum, Tang, Buchsbaum, Wei, & Atlas, 

2001). In our data a decrease of FA values 

was detected when comparing children and 

elderly adults, and young and elderly adults, 

in bilateral IFOF. However, the data of 
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Voineskos et al. (2012) displayed significant 

age-related decline for IFOF, ILF and SLF.  

In particular, the IFOF is positioned to 

mediate long-range interactions between 

the ventral visual stream, subserving object 

and face recognition, and emotional 

processing regions (i.e., orbitofrontal 

cortex). A reduction of integrity in right IFOF 

seems significantly associated with impaired 

emotion recognition from facial expressions 

(Philippi et al., 2009). In our data a dramatic 

decrease with age in the right IFOF was 

found (see Lebel & Beaulieu, 2011; Lebel et 

al., 2008; Scherf et al., 2014). However, we 

also found a decrease in left IFOF. Thomas 

et al. 2008, have reported that left 

hemisphere exhibit a tends towards 

reduction in microstructural integrity, as 

revealed in fractional anisotropy values, in 

spite of the IFOF in the right hemisphere 

showing a particular age related 

vulnerability. Also they have documented a 

robust association between the reduction of 

IFOF integrity related to age and face 

processing, suggesting that the alteration in 

structural connectivity between the ventral 

temporal and frontal cortices may account 

for the age-related difficulties in face 

processing. The age-related FA decline 

restricted to frontal regions, leaving 

posterior and inferior brain regions relatively 

intact, suggests that there is a selective 

decline of anterior anisotropy across aging, 

which provides evidence supporting a role 

of a microstructural white matter mechanism 

for the commonly observed decline in 

frontally-based functions (Pfefferbaum & 

Sullivan, 2003). 

Number of streamlines 

Only a few studies have focused in the 

number of streamlines of the whole brain 

(Thomas et al., 2008) or specific tracts 

(Stadlbauer et al., 2008; Tavor et al., 2014; 

Thomas et al., 2008; Valdés-Sosa et al., 

2011) for analyzing the relation between 

aging and fractional anisotropy. Volume is a 

measure mostly related with number of 

streamlines. It has been calculated as the 

size of the image voxel multiplied by the 

number of voxels conforming a given tract 

(Scherf et al., 2014). However, as a volume 

increase has not been directly associated 

with elevated fractional anisotropy (Lebel & 

Beaulieu, 2011) this last parameter is not 

suitable for characterizing the number of 

streamlines.  

Our data shows that young adults exhibit 

significantly more fibers than both children 

and elderly adults (except in SLF), although 

they show the same relative pattern of fiber 

number in all tracts compared to children. 

However, elderly adults show a decrease in 

the number of streamlines compared to 

young adults in the IFOF, as well as 

children to young adults in both 

hemispheres. In addition, elderly adults 

evince an increased number of streamlines 

in SLF, predominantly in the right 

hemisphere. This is in contradiction with 

reports showing a decrease in the number 

of fiber projections (4.7%) (Stadlbauer et al., 

2008).  

It has been reported that white matter 

volume increases significantly with age 

between the age range of 5-32 years (Lebel 

& Beaulieu, 2011), especially during 

adolescence, when the white matter volume 

increases it is about 74% (Courchesne et 

al., 2000). This fact explains the statistically 

significant increase detected between 

childhood and youth for all tracts. However, 

it has been reported that after youth a 

decline of the number of streamlines of the 

whole brain takes place as a function of 

age, meaning a decreased  white matter 



Age-Related Changes in Face Recognition 

 

                                   Revista Neuropsicología, Neuropsiquiatría y Neurociencias                                   45 

volume (Thomas et al., 2008), especially 

after the age of 40 (Ge et al., 2002).  

The similar pattern of increase/decrease 

number of streamlines of all tracts 

comparing children and young adults can be 

due to developmental processes across all 

major white matter tracts during childhood, 

which continues during the twenties in 

several association tracts, especially the ILF 

and IFOF (Courchesne et al., 2000; 

Pfefferbaum & Sullivan, 2003). These 

reports support the significant increase of 

white matter volume between children and 

young adults in all tracts founded here 

(IFOF, ILF and SLF). It can be due to an 

earlier maturation in tracts pertaining to 

intrahemispheric connections, which 

continues to adulthood. However, Scherft et 

al. (2014) found a significant increment in 

ILF but not in IFOF. On the other hand, 

analysis directed to obtaining more accurate 

estimates of the number of streamlines 

would be perform the data normalization, 

eliminating the intrinsic differences between 

brains of children and adults.  

The fact that young adults exhibit more 

fibers than children (IFOF, ILF, SLF) and 

elderly adults (IFOF) has been previously 

described (Ge et al., 2002), with a white 

matter volume maximum around middle 

adulthood, suggesting that maturation may 

continue into the midlife after the 

aforementioned large increase from early 

childhood to adolescence (Courchesne et 

al., 2000; Pfefferbaum et al., 1994). This 

phenomenon is likely associated with 

continued myelination and axonal growth 

(Webb et al., 2001). These facts can 

support the same pattern in number of 

streamlines between children and young 

adults based on adolescent and post-

adolescent maturation. A possible 

explanation is that increase myelination and 

advancing axons are causing that tissue 

previously classified as gray matter to be 

newly classified as white matter, which 

accounts for the tissue volume changes 

during adolescent maturation despite the 

constant total brain volume (Lebel et al., 

2008).  

The phenomenon of decreased white matter 

volume in the healthy aging process is still 

not well characterized (Ge et al., 2002). This 

decrease of white matter may result from 

structural changes which include myelin and 

axonal destruction (Salat, Kaye, & 

Janowsky, 1999; Van Swieten et al., 1991), 

dilatation of perivascular spaces (Awad, 

Spetzler, Hodak, Awad, & Carey, 1986; 

Fazekas et al., 1993), and gliosis (Fazekas 

et al., 1991). However, findings from 

postmortem studies in adult life (Haug, 

1985; Peters, Morrison, Rosene, & Hyman, 

1998; Terry, DeTeresa, & Hansen, 1987) 

have suggested that the white matter loss 

might be correlated with a decrease in the 

size of large neurons rather than a notable 

decrease in the number of neurons.  

The general decrease in the number of 

streamlines for most tracts in elderly adults 

is consistent with previous reports that show 

a negative correlation of white matter with 

age (Ge et al., 2002); especially in the 

association tracts studied in this paper 

(Stadlbauer et al., 2008). However, Ge et al. 

(2002), pointed out that such decrease in 

white matter is not linear but quadratic, 

decaying by 13% in the oldest subjects 

(Courchesne et al., 2000). Specifically, our 

data showed a reduction in the number of 

streamlines between young and elderly 

adults in IFOF, which has been associated 

with visuospatial construction ability 

(Voineskos et al., 2012). These results are 

in accordance to data reported by Thomas 

et al. 2008, which revealed a statistically 
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significant decline of IFOF in the number of 

streamlines and the number of voxels 

through which these fibers pass in the 

whole brain as a function of age. On the 

other hand, Voineskos et al. (2012), have 

reported that age-related disruption of the 

ILF predicted performance in tasks that 

require visuomotor dexterity and fast visual 

processing.  

The absence of inter-hemispherical 

asymmetry in our results differs from 

previous reports, which have revealed 

larger sizes of tracts in the right 

hemisphere, perhaps consistent with a more 

prominent role in face processing 

(Kanwisher et al., 1997; Meadows, 1974; 

Sergent, Ohta, & MacDonald, 1992). 

However, at this point reports are 

contradictory. It has been reported left-

biased (Thomas et al., 2008) and right-

biased asymmetries in the IFOF, with no 

significant differences (Wakana et al., 

2007). Our results are in line with these 

findings. 

Several limitations should be noted in the 

present study. First, cross-sectional studies 

are limited because they cannot provide 

information about change within individuals. 

It is important to consider that tract volume 

or fiber number as measured by DTI does 

not represent the true volume of the tract, 

since the edges of tractography bundles are 

defined artificially by FA values (Lebel & 

Beaulieu, 2011). It is important to note that 

the fiber tracking algorithm used here (Fiber 

Assignment by Continuous Tracking) is 

highly susceptible to errors in the orientation 

of the principal eigenvector, due both to 

noise and to instances where the direction 

of the underlying tract anatomy is 

ambiguous (Valdés-Sosa et al., 2011), 

which is not ideal for assessment of voxels 

where fiber bundles cross, diverge, or 

converge. Also it would be supportive if a 

coincidence analysis was made between 

the coordinates of STS reported in literature 

and the core of SLF, to gain in accuracy 

about the connection between this face 

processing node and the wire associated. 

 

 

Conclusions 

In summary, our study compiled evidence 

about the aging-related changes in three 

major white matter tracts associated with 

the face processing system. According to 

FA values, both ILF and SLF remain 

unaltered across life. However, the IFOF 

experiences a decrease in integrity that 

could partially subserve the increasing 

difficulty for processing faces in elderly 

individuals. In addition, all tracts exhibit an 

increased number of streamlines from 

childhood to early adulthood, consistent with 

previously described white matter 

developmental processes. Interesting, again 

only the IFOF shows a decrease in this 

measure in elderly individuals. Thus, both 

measures point to an overall decrease in 

the fronto-occipital connectivity through the 

IFOF at older age. Further additional studies 

would be required to link such decrease 

with appropriate scales and tasks 

characterizing face processing in young and 

elderly individuals. 
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